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Supplement 1: 

Possible depth-resolved reconstruction of shear moduli in 
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optical coherence tomography and elastography. 
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Section 1: 

Guided mechanical wave propagation in a multi-layered NITI material 

Assume that a CXL-treated cornea can be modelled as a laminate of NITI layers. Each layer 
has a finite thickness with defined in- and out-of-plane elastic moduli. The first layer is bounded 
on the top by air and the last layer is bounded on the bottom by a liquid to mimic corneal in 
vivo conditions. Because collagen fibers are oriented randomly in the equatorial plane, it 
possesses symmetry across fibers, i.e. in the direction normal to the corneal surface, which is 
mathematically described as transverse isotropy. 

 

1.1. Dimensionless equations of motion in a multi-layered NITI material 

Because the macroscopic corneal symmetry did not change following crosslinking, we assume 
that it contains at least two layers of finite thickness with distinct in- and out-of-plane shear 
moduli 𝜇 and 𝐺 respectively. The density of every layer, 𝜌, is assumed to be identical for all 
layers and equal to that of the liquid bounding the lower layer, 𝜌 𝜌 1000 kg∙m-3. Using 
Voigt’s notation, the stress-strain relationship in each layer can be written as: 
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where 𝜆 𝜌𝑐 2𝜇 is the Lamé coefficient, and 𝑐  is the speed of the longitudinal wave that 
ensures incompressibility of the material (the Poisson’s ratio of each layer taken individually 
is 𝜈 ∼ 0.5). 

Newton’s second law yields the wave equation of motion in terms of the displacement 
vector �⃗� 𝑢, 𝑣,𝑤 , 

 

𝜌  .       (S2) 
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Because our OCE experiments use AμT acting as a pseudo-line source, we can assume a 
plane-strain state (no displacement polarized along the 𝑦-axis: 𝑣 0, and no propagation along 
the 𝑦-axis: 𝑢 𝑢 𝑥, 𝑧 ,𝑤 𝑤 𝑥, 𝑧 ). As such, in the NITI model, the equations of motion can 
be expressed as: 

 
𝜌𝑢 𝜆 2𝜇 𝑢 𝐺𝑢 𝜆 𝐺 𝑤  ,   (S3) 

     𝜌𝑤  𝐺𝑤 𝜆 2𝜇 𝑤 𝜆 𝐺 𝑢  ,  (S4) 
 
where the lower indexes indicate derivatives with time 𝑡  or spatial coordinates (x, z). 

By introducing the scales: 
 

Position:  𝑥 ∼ ℎ ∑ ℎ  , 
Displacement:  𝑢 ∼ ℎ , 

Time:   𝑡 ∼ ℎ ∙  , 

Frequency:  𝑓 ∼ ∙  , 

Wavenumber:  𝑘 ∼  , 
where ℎ relates to the overall thickness, ℎ  to the thickness of the 𝑖  layer , and 𝜇 max 𝜇  
is the maximum in-plane shear modulus among the layers. We can then define the 

dimensionless parameters 𝑡∗  , 𝑢∗  , 𝑥∗  , 𝑓∗ 𝑓ℎ  , 𝑘∗ 𝑘ℎ. 

 
By applying this change of variables, we have: 
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which eventually leads to the dimensionless equations of motion: 
 

𝜌.𝑢∗ ∙ 𝜆 2𝜇 𝑢∗ ∙ 𝐺𝑢∗ ∙ 𝜆 𝐺 𝑤∗ ∙  ,  (S8) 

𝜌𝜇 ∙ 𝑤∗  𝐺𝑤∗ ∙ 𝜆 2𝜇 𝑤∗ ∙ 𝜆 𝐺 𝑢∗ ∙  ,  (S9) 

 
and after rearranging: 
 

𝑢∗ 𝛽 𝑢∗ 𝛼 𝑢∗ 𝛾 𝑤  
∗  ,    (S10) 

     𝑤∗ 𝛼 𝑤∗ 𝛽 𝑤∗ 𝛾 𝑢   
∗ ,    (S11) 

with  

𝛼   ,      (S12) 

𝛽  ,      (S13) 

𝛾   .      (S14) 

 
For the sake of simplicity, we will later omit the asterisk ‘∗’ symbol to refer to dimensionless 

variables. 
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1.2. Dispersion relationship for guided mechanical waves in a multi-layered NITI 
material 

 
Consider here a material containing multiple layers with identical density, each of finite 
thickness ℎ . As such, there is a system of [2 𝑁] equations for the 𝑁 layers: 

 
𝑢 , 𝛽 𝑢 𝛼 𝑢 𝛾 𝑤  ,    (S15) 
𝑤 ,  𝛼 𝑤 𝛽 𝑤 𝛾 𝑢  ,    (S16) 

   𝛼   ,      (S17) 

   𝛽  ,      (S18) 

   𝛾   .      (S19) 

 
Assume harmonic solutions of the form: 
 

 𝑢 𝑥, 𝑧, 𝑡 𝐴 𝑒  ,   (S20) 
𝑤 𝑥, 𝑧, 𝑡 𝐵 𝑒  .   (S21) 

 
Without loss of generality, assume 𝐵 1. By substituting equations (S20) and (S21) into 

the equations of motion (S15) and (S16), the constants 𝑙  and 𝐴  can be determined for each 
frequency and wavenumber such that: 

 

 𝑙  ϕ 𝜙 4𝑞 𝑞    ,    (S22) 
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where 

 𝜙 𝑞 𝑞  ,    (S24) 

𝑞 𝑘  ,      (S25) 

𝑞 𝑘  .      (S26) 

 
The full solutions for a given layer can be expressed as the combination of 4 partial waves: 
 

𝑢 𝑥, 𝑧, 𝑡  ∑ 𝐶 , 𝐴 , 𝑒 , 𝑒  ,  (S27) 
     𝑤 𝑥, 𝑧, 𝑡  ∑ 𝐶 , 𝑒 , 𝑒  .    (S28) 

 
In the fluid, the dimensionless velocity potential is: 
 

    Φ 𝐶 , 𝑒 𝑒  ,     (S29) 
 

where 𝜖 𝑘
𝜔
𝛿

 and 𝛿
𝜌
𝜇

𝑐  . 

The constants 𝐶 ,  are chosen so that the solutions satisfy the boundary conditions. 
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Traction free air-solid interface sets  
 

𝜎 , 0   at    𝑧 1 ,  (S30) 
𝜎 , 0   at   𝑧 1 .  (S31) 

 
Continuity of normal components of stress and displacement between each layer give 

 

𝜎 , 𝜎 ,   at 𝑧 1
∑

 ,  (S32) 

𝜎 ,  𝜎 ,   at  𝑧 1
∑

 ,  (S33) 

   𝑢  𝑢    at  𝑧 1
∑

 ,  (S34) 

   𝑤  𝑣    at  𝑧 1
∑

 .  (S35) 

 
Medium-fluid boundary conditions (zero tangential stress, continuity of normal stress 

components and speed) set 
 

𝜎 , 0   at 𝑧 0 ,   (S36) 

𝜎 ,  𝜎    at  𝑧 0 ,   (S37) 
   𝑤  𝑤    at  𝑧 0 .   (S38) 

 
Substituting the general solution into the boundary conditions yields a 4N+1 4N+1  

homogeneous system for the coefficient: Mc 0. This system has a nontrivial solution if and 
only if the determinant of M (see Eq. (S39) below) is zero. For a given angular frequency 𝜔, 
the wavenumber 𝑘 associated with different wave types (pure shear or guided modes) can be 
found by minimizing the absolute value of the determinant: 
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Section 2:  

Experimental validation of the analytical multi-layer model in bilayer isotropic 
phantoms 

While FEM simulations in Onscale demonstrated the appropriateness of the multi-layer 
framework, here we provide additional experimental validation using isotropic phantoms. 

Agarose phantoms were prepared using different agar concentrations. Four different 
phantoms were made. The first two phantoms (Phantom A and Phantom B, Table S1) 
represented homogeneous single layers with different stiffness, in which three (3) and two (2) 
wt. % of agar were used respectively. Titanium nanoparticles were added to the mixtures 
(respectively 0.1 and 0.2 wt % Ti02) to create optical scattering and enable differentiation of 
phantom structures. Both phantoms were isotropic.  

Two bilayer phantoms were made of the same concentration of agar and Ti02. Phantom C 
had a stiffer layer on the top of the softer layer. The stiffer solution was brought to 90°C and 
poured into a petri dish for solidification. Its thickness was about 500 µm. Then the softer 
solution was brought to 90°C and poured on top off the stiff layer. Phantom D had the opposite 
layer orientation (see Table S1). The image-based calculated total thickness was           
1000 μm 9 μm, with approximately 2/3 of the full thickness for the top layer and 1/3 for the 
bottom layer. Elastic moduli of the layers in the bilayer phantoms were assumed equal to those 
for single layers (Phantoms A and B). For all experiments, the phantoms were laying on top of 
a liquid bath, replicating corneal boundary conditions. 

 
   

Table S1. Phantom properties. 

 
Agar 

(w.t %) 
Ti02 

(w.t %) 
Thickness, 𝒉  

(µm) 
Stiffness,𝑮  

kPa  

 
Single layer phantoms 

Phantom A 2 0.4 996 ∓  1 216 2 

     

Phantom B 3 0.2 777 30 84 5 

 
2-layer phantoms 

Phantom C - - 1000 9 - 

Stiff (top) 3 0.2 690 25 
211  7 

(from 2-layer model fitting) 

Soft (bottom) 2 0.4 310 25 
84 5 

(assumed equal to Phantom B) 

     

Phantom D - - 942 2 - 

Soft (top) 2 0.4 242 20 
84 5 

(assumed equal to Phantom B) 

Stiff (bottom) 3 0.2 700 20 225  5 
(from 2-layer model fitting) 
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2.1. Elasticity of single layer phantoms 

The spatio-temporal wavefields of the control phantoms and their associated frequency-
wavenumber spectra are shown respectively in Figs. S1(a), (b) for Phantom A and 
Figs. S1(c), (d) for Phantom B. The fits are performed assuming an isotropic medium where 
only  the  𝐴 -mode  is  considered.  We  measured  𝐺  84 kPa 5 kPa   and  
𝐺 216 kPa 2 kPa (see Table S1). The mean values and error bars are obtained from 
a statistical analysis over 5 scans repeated at the same location. These values serve as the 
baseline to analyze experiments in bilayer phantoms. 

 
2.2. Guided waves in bilayer phantoms 

Structural images of the bilayer phantom are shown in Fig. S2. The images correspond to two 
different locations of the same phantom, where: (a) the stiffer layer (on top) takes 
approximately 2/3 of the total thickness (Phantom C); (b) the bilayer phantom is reversed 
upside-down, and the stiffer layer (at the bottom) takes approximately 3/4 of the total thickness 

 
Fig. S1. Spatio-temporal wavefields (x-t plots) and their associated frequency-wavenumber (𝑓-𝑘) spectra; (a), 
(b) Phantom A (stiffer); (c), (d) Phantom B (softer). In (b) and (d), the best fit solution of the 𝐴 -mode is indicated 
in red. 

 
Fig. S2. Structural images of the bilayer agar phantom at two different locations with (a) Phantom C (harder part 
on the top, see Table S1) and (b) Phantom D (softer part on the top, see Table S1). Red and blue arrows, 
respectively, indicate the thickness of stiffer and softer layers. 
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(Phantom D). Note that the external interface of the stiffer layer is smoother because it was in 
contact with the mold during polymerization while the softer layer was in contact with air. The 
average thicknesses for Phantoms C and D were respectively ℎ 1000 µm 9 µm  and       
ℎ 942 µm 2 µm. The mean values and error bars are obtained from a statistical analysis 
over 5 scans repeated at the same location. The parameters of all phantoms are given in 
Table S1. 

As observed in the control phantoms (Fig. S2), the 𝐴 -mode dominates for such stiffness 
and thickness. Similar to CXL-treated corneas, we expect the 𝐴 -mode to dominate as well in 
the bilayer phantom. Figure S3 illustrates this for Phantom C (stiffer layer on top). 
Figures S3(a), (b) show snapshots of the 2D-wavefields at two different time instants. The     
𝐴 -mode clearly dominates and occupies the whole thickness, with no noticeable variation 
between layers. First, we applied a geometric correction to the wavefield to account for the 
slight curvature of the phantoms. Then, we measured the group velocity of the wavefield over 
depth (see Fig. S3(c)) using correlation and confirmed that the mode has a constant speed over 
depth, with an average group velocity of about 7 m/s.  

The SNR decreases in the posterior region of the phantoms due to artificial mirror images 
of the phantom within the field of view. This impacts the precision of group velocity 
measurements, as can be seen in Fig. S3(c). If guided wave behavior is ignored, which means 
that the group and phase velocities are identical, then the elasticity of the phantoms would be 
estimated using the well-known formula: 𝐺 𝜌𝑣 50 kPa. This value is almost two times 
less than the elasticity measured for the softer layer, and over four times less than that of the 

 
Fig. S3. In-depth analysis of the guided wavefield in Phantom C, shown in Fig. S1(a). (a), (b) Snapshots of the 
wavefields (𝑥-𝑡 plots) at two time-instants separated by 278 µs. (c) In-depth profile of the group velocity measured 
using correlation. (d), (e), (f) Spatio-temporal wavefield averaged respectively over: (d) the total thickness; (e) the 
top layer; (f) the bottom layer. (g), (h), (i) 𝑓-𝑘 spectra associated respectively with the 𝑥-𝑡 plots shown in (d), (e), 
(f). The maximum wavenumber detected for each frequency of the spectrum and for each case are displayed on 
top of the spectra. 
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harder layer. Clearly, a simple estimate based on the group velocity is erroneous and does not 
provide in-depth information; guided wave analysis is required. 

To confirm our first observations with the group velocity, we also measured how 𝑥-𝑡 plots, 
and ultimately 𝑓-𝑘 spectra, varied with depth. These results are shown in Figs. S3(d-i) with: 
(d), (g) - the wavefield averaged over the whole depth and its associated 𝑓-𝑘 spectrum; (e), (h) 
- the wavefield averaged over depth in the top layer and its associated 𝑓-𝑘 spectrum; (f), (i) - 
the wavefield averaged over depth in the bottom layer and its associated 𝑓-𝑘 spectrum. For 
comparison, the maximum wavenumber of the spectrum for each frequency was measured and 
displayed on top of the three cases: they are nearly an exact match! This confirms that the 
guided wavefield, dominated by the 𝐴 -mode, does not vary with depth. Guided wave 
propagation completely mixes phantom properties, and data acquired at different depths cannot 
be used for direct depth-resolved moduli reconstruction.  

In contrast, our model can reconstruct individual layer properties via the dependence of the 
𝐴 -mode on individual layer parameters. Because guided 𝐴 -modes are the same at all depths, 
they can be acquired at any surface or at any depth, or averaged over the depth even if the 
material stiffness varies with depth. This is also an advantage for the proposed reconstruction 
method. 

Identical in-depth processing was applied to Phantom D, i.e., when the phantom is reversed 
upside-down, and the stiff layer is at the bottom. The results are summarized in Fig. S4 and 
show similar features to those discussed above with Fig. S3. 

 
Fig. S4. In-depth analysis of the guided wavefield in Phantom D shown in Fig. S1(b). (a), (b) Snapshots of the 
wavefields (𝑥-𝑡 plots) at two time-instants separated by 278 µs. (c) In-depth profile of the group velocity measured 
using correlation. (d), (e), (f) Spatio-temporal wavefield averaged respectively over: (d) the total thickness; (e) the 
top layer; (f) the bottom layer. (g), (h), (i) 𝑓-𝑘 spectra associated respectively with the 𝑥-t plots shown in (d), (e), 
(f). The maximum wavenumbers detected for each frequency of the spectrum and for each case are displayed on 
top of the spectra. 
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2.3. Elasticity of the bilayer phantoms 

Because the total thickness of the bilayer phantoms is known, and the respective thickness and 
baseline stiffness of each layer is also known, we can now fit the stiffer layer using the 
analytical model and the method introduced in this paper and compare to the known properties. 
To replicate the method used for the cornea sample, we fixed the value of the softer layer so 
that 𝐺 𝐺 84 kPa 4 kPa. We then searched for a maximum of goodness of fit 
while 𝐺  was varied within a broad range of elasticity values. The goodness of fit is shown 
in Fig. S5(a) for Phantom C and in Fig. S5(b) for Phantom D. The best fit solutions are 
displayed on the 𝑓-𝑘 spectrum associated with each case in Figs. S5(c), (d). Using this method, 
we measured the stiffer layer to be on average 𝐺 211 kPa 7 kPa  and                    

𝐺 225 kPa 5 kPa for, respectively, Phantoms C and D (see Table S1). The mean 
values and error bars are obtained from a statistical analysis over 5 scans repeated at the same 
location. These results are in good agreement with the expected value for the stiffer layer 
measured from the control phantom: 𝐺 215 kPa 2 kPa. 

Overall, the experiments on isotropic phantoms confirm the soundness of the theoretical 
framework and processing technique to assess in-depth elasticity variation with guided 
mechanical waves in soft tissues such as the cornea. Although the phantoms considered here 
are isotropic, we believe that these phantom studies well justify the approach introduced for 
anisotropic cornea layers. Numerical simulations also fully confirm depth-independent guided 
wavefields, spectra, and group velocities in media with depth-varying elastic properties. 
   

 
Fig. S5. Fitting 𝑓-𝑘 spectrum of the bilayer phantoms. The softer layer elasticity is fixed and the best fit is sought 
by varying the elasticity of the stiffer part and evaluating the goodness of fit (GOF) between the measured 
spectrum and the analytical 𝐴 -mode dispersion curve obtained with the 2-layer model. (a) GOF curve for the case 
shown in Fig. S1(a), i.e., the stiffer part on top. (b) GOF curve for the case shown in Fig. S1(b), i.e., the softer part 
on top. The red circle indicates the optimum. (c), (d) 𝑓-𝑘 spectra associated with the cases shown above. The red 
dashed curve shows the 𝐴 -mode dispersion curve corresponding to the best fit solution. 
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Section 3:  

Effective 𝑨𝟎-mode for a multi-layered NITI medium 

3.1. Do engineering moduli correctly define the effective guided mechanical wave in 
a multi-layered NITI medium? 

As discussed in Section 3.3 of the main manuscript, elastic moduli determined for all layers of 
CXL-treated cornea can be used to compute effective corneal engineering moduli, where 𝜇  
uses a simple mixture rule (Eq. (5) of the main manuscript) whereas 𝐺  requires the inverse 
mixture rule (Eq. (4) of the main manuscript). 

We also checked whether this model can describe guided wave behavior in the partially 
crosslinked cornea when considered as an effective homogeneous material. First, we applied 
the fitting procedure to the treated cornea, considering it as a single layer with ‘effective’ 
moduli (see Fig. S6). We could determine a pair of moduli for the computed f-k spectrum that 
best   fit   the  𝐴 -mode.   These   effective   ‘guided   wave’   elastic   moduli   were          
𝐺 127.5  kPa∓ 12, 17  kPa  and 𝜇 9.3 MPa ∓ 8, 18  MPa , with a           
𝛷  0.953 goodness of fit. 

These values clearly do not equal the corneal effective engineering moduli,                      
𝐺 77.3 kPa ∓ 6, 10  kPa  and 𝜇 15.4  MPa ∓  8, 11 MPa , computed with the 
mixture rules described by Eqs. (4), (5) using moduli measured with OCE in both layers. That 
is, it appears that the effective guided wave behavior in a multi-layered NITI medium is not 
described by the corneal effective engineering moduli determining its low-frequency quasi-
static deformation. 

3.2. A single-layer approximation for the computation the guided mechanical wave 
dispersion in a multi-layered NITI medium  

Using our analytical model, we further investigated the accuracy of the mixture rule (Eqs. (4) 
and (5)) to predict the effective ‘guided wave’ behavior. We considered different distributions 
of stiffness: i) a two-layer case, as assumed for CXL-treated corneas; ii) a five-layer case with 
random distribution of stiffness and thickness of the layers; iii) a medium with both 𝐺 and 𝜇 
following an exponential decay in stiffness from top to bottom. In all cases, the total medium 
thickness was ℎ 500 µm and its top and bottom layers replicated the corneal boundary 
conditions. Matlab scripts to reproduce these results are provided in Ref. [1]. 

Results for case i) are presented in Fig. S7 for a material containing two layers with 
   𝐺 300 kPa and 𝜇 30 MPa, and 𝐺 60 kPa and 𝜇 5 MPa. For this case, 

 
Fig. S6. Fitting experimental results obtained for a partially (in-depth) CXL-treated cornea with either 1- or    
2-layer analytical model. (a) Measured vertically polarized top-surface vibration velocity field (x-t plot) of the 
guided wave. (b) Its 2D-FFT spectrum with best-fit dispersion curves for 1-layer (red dashed line) and 2-layer 
(black solid line) models superimposed.  
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we also explore different ratios between thicknesses of anterior and posterior layers. Results 
show that the 𝐴 -mode computed with the effective engineering moduli using the mixture rules 
of Eqs. (4) and (5) does not match the exact analytical solution computed using the individual 
stiffness moduli of the layers, i.e., using the 2-layered model directly. The difference is 
especially pronounced in the high-frequency range. 

Results for case ii) are presented in Fig. S8. The distribution of stiffness for respectively 𝐺 
and 𝜇  are shown in Figs. S8(b), (c). The thicknesses of layers were random with the total 
thickness of ℎ 500 μm. As for case i), we also see that assuming a single layer material with 
averaged moduli computed using engineering effective mechanical moduli does not accurately 
predict 𝐴 -mode dispersion. 

 
Fig. S7. A0-mode dispersion spectrum computed using different models and sets of mechanical moduli. In all 3 
panels, black solid line corresponds to the exact solution obtained with the 2-layer model; blue dotted line 
corresponds to a 1-layer model with effective engineering mechanical moduli (Eq. (4) for 𝐺 and Eq. (5) for 𝜇); 
red dashed line corresponds to a 1-layer model with both effective moduli computed with Eq. (5). Three different 
thicknesses of the top layer are considered (a) 150 μm (30/70 repartition), (b) 250 μm (50/50 repartition), and (c) 
350 μm (70/30 repartition). Elastic moduli of the top layer are 𝐺 300 kPa and      𝜇 30 MPa and for the 
bottom layer are 𝐺 60 kPa and 𝜇 5 MPa, and the total thickness is ℎ 500 µm for all 3 cases.  

 

 

Fig. S8. A0-mode dispersion spectrum computed in a 5-layer medium using different models and sets of 
mechanical moduli. In panel (a), black solid line corresponds to the exact solution obtained with the 2-layer model; 
blue dotted line corresponds to a 1-layer model with effective engineering mechanical moduli (Eq. (4) for 𝐺 and 
Eq. (5) for 𝜇); red dashed line corresponds to a 1-layer model with both effective moduli computed with Eq. (5).    
(b) Distribution of modulus 𝐺 in the 5-layer medium (light blue solid line), and its effective value obtained with 
Eq. (4) (blue dotted line) and with Eq. (5) (red dashed line). (c) Distribution of modulus 𝜇 in the 5-layer medium 
(light blue solid line), and its effective value obtained with Eq. (5) (purple dash-dotted line). Total thickness of the 
medium is ℎ 500 µm. 
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Results for case iii) are presented in Fig. S9. The distribution of stiffness for respectively 𝐺 
and 𝜇 are shown in Figs. S9(b), (c). We considered 10 layers where 𝐺 decreased exponentially 
from 500 kPa on top to 50 kPa at the bottom and  𝜇 decreased exponentially as well from 20 
MPa on top to 2 MPa at the bottom. As for both cases i) and ii), the effective mechanical moduli 
do not describe the dispersion curve accurately, especially over the high-frequency range.  

Thus, we can conclude that the mixture rules providing effective engineering moduli of 
multi-layered NITI media do not accurately describe guided wave behavior. As such, 
reconstruction of effective moduli from OCE measurements in a partially CXL-treated cornea 
should be performed with care. 

The second question is which mixture model would describe guided wave behavior in a 
partially CXL-treated cornea with reasonable accuracy. This is an open and non-trivial question 
outside the scope of this paper. However, as shown in Figs. S7, S8 and S9, a simple direct 
mixture rule for both in- and out-of-plane moduli (Eq. (5)) produces a dispersion curve closely 
matching the N-layer model.  

For the two-layer case (Fig. S7), equal thickness layers (50/50 split ratio, Fig. S7(b)) show 
a near-exact match, while the larger the difference between the layer thicknesses, the larger the 
difference between the solutions, although this difference remains small. In Fig. S8 (random 
thickness distribution), the simple mixing rule provides a reasonably good match, even though 
there is a small difference in the dispersion curves. In Fig. S9 (exponential decay of moduli), 
there is an almost exact match between the single layer effective model and the N-layer case. 

Based on this observation, we assume that a simple mixture rule applied to both mechanical 
moduli 𝜇 and 𝐺 provides a reasonable description of guided wave dispersion in multi-layer 
NITI materials. Note that this remark also extends to isotropic nearly incompressible 
composites. The effective guided model and the exact N-layer solution only differ slightly for 
an unequal distribution of thicknesses. However, we note that this rule is empirical and is not 
theoretically proven. Finding an exact analytical solution may be difficult and include 
frequency-dependent terms. This is a subject for future studies. 
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Fig. S9. A0-mode dispersion spectrum computed in a 10-layer medium with an exponential decay of elastic 
moduli using different models and sets of mechanical moduli. In panel (a), black solid line corresponds to the 
exact solution obtained with the 2-layer model; blue dotted line corresponds to a 1-layer model with effective 
engineering mechanical moduli (Eq. (4) for 𝐺 and Eq. (5) for 𝜇); red dashed line corresponds to a 1-layer model 
with both effective moduli computed with Eq. (5). (b) Distribution of modulus 𝐺 in the 5-layer medium (light blue 
solid line), and its effective value obtained with Eq. (4) (blue dotted line) and with Eq. (5) (purple dash-dotted 
line). (c) Distribution of modulus 𝜇 in the 5-layer medium (light blue solid line), and its effective value obtained 
with Eq. (5) (red dashed line).  Total thickness of the medium is ℎ 500 µm.  


